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Qualitative Network Models (QNMs), Fuzzy Cognitive Maps (FCMs), and Bayesian Belief Networks (BBNs) have been proposed as methods to
formalize conceptual models of social–ecological systems and project system responses to management interventions or environmental change.
To explore how these different methods might influence conclusions about system dynamics, we assembled conceptual models representing
three different coastal systems, adapted them to the network approaches, and evaluated outcomes under scenarios representing increased fishing
effort and environmental warming. The sign of projected change was the same across the three network models for –% of system variables on
average. Pairwise agreement between network models was higher, ranging from  to %; average levels of similarity were comparable between
network pairs. Agreement measures based on both the sign and strength of change were substantially worse for all model comparisons. These
general patterns were similar across systems and scenarios. Different outcomes between models led to different inferences regarding trade-offs
under the scenarios. We recommend deployment of all three methods, when feasible, to better characterize structural uncertainty and leverage
insights gained under one framework to inform the others. Improvements in precision will require model refinement through data integration
and model validation.

Keywords: Bayesian Belief Network, ecosystem-based management, food webs, Fuzzy Cognitive Map, Georges Bank, Mid-Barataria Basin, Pribilof
Islands, Qualitative Network Model.

Published by Oxford University Press on behalf of International Council for the Exploration of the Sea 2021. This work is written by (a)
US Government employee(s) and is in the public domain in the US.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/78/10/3674/6414826 by N
O

AA C
entral Library user on 31 January 2022

https://orcid.org/0000-0001-6601-4550
https://orcid.org/0000-0002-5444-3902
mailto:Jonathan.Reum@noaa.gov


Network approaches for formalizing conceptual models in ecosystem-based management 

Introduction
Ecosystem-based management (EBM) of resources, services, and
human activities is complex due to the array of interacting system
components and processes, the many sources of uncertainty, and
the necessity of trade-offs in decision-making. Conceptual mod-
els can be highly valuable tools in addressing these challenges.
They can be developed to depict components, processes, and link-
ages that make up a social–ecological system, and can encom-
pass environmental processes that influence basic physical, chem-
ical, and biological properties through to the governance systems
and social patterns that regulate and influence human activities
(e.g. Heemskerk et al., 2003; Harvey et al., 2016). By focusing on
the essential elements of the system, the visual depiction of con-
ceptual models can help provide clarity and context to decision-
makers, managers, stakeholders, and scientists to better navigate
the complexity of EBM (Kelble et al., 2013; Dale et al., 2019; Car-
riger and Parker, 2021). In addition, conceptual models are often
naturally constructed as networks that can be expressed mathe-
matically as graphs, where vertices correspond to variables and
edges indicate causality, interactions, or associations between vari-
ables. The formalization of conceptual models as network mod-
els provides a powerful tool for exploring how management-
relevant perturbations propagate through interaction pathways to
impact the model system as a whole, which can aid identifica-
tion of potential trade-offs or unexpected outcomes relevant to
EBM (Reum et al., 2020a; Baker and Bode, 2021; Carriger and
Parker, 2021).

Three network modelling approaches have received particu-
lar attention for their ability to formalize conceptual models
of social-ecological systems and simulate potential responses to
change: Qualitative Network Models (QNMs), Fuzzy Cognitive
Maps (FCMs), and Bayesian Belief Networks (BBNs). The ap-
proaches are considered “soft” network methods in that they can be
formulated with little or no quantitative information and as a mini-
mum require only a qualitative (QNM), semi-qualitative (FCM), or
subjective understanding (BBN) of system structure, though quan-
titative data integration is feasible (McCann et al., 2006; Ramsey and
Norbury, 2009; Melbourne-Thomas et al., 2012; Baker et al., 2018).
While quantitative or “hard” network modelling approaches (e.g.
Yodzis, 1998; Fulton, 2010) produce more precise numerical pro-
jections, they also demand significant amounts of data, which are
limited in many systems, raising the danger that model structure
will reflect data availability rather than essential features of the un-
derlying system (Dambacher et al., 2003). Further, they require sub-
stantial investment of resources (Dambacher et al., 2009) and their
ability to represent coupled social and ecological systems can be
constrained by their capacity to represent only a limited range of
“currencies” such as units of energy or material (Harvey et al.,
2016). In contrast, soft network approaches emphasize understand-
ing of the system as whole, are well-suited to synthesizing diverse
information sources and representing coupled systems, and can
be rapidly prototyped and deployed, albeit at the cost of precision
(Puccia and Levins, 1985; Özesmi and Özesmi, 2004; McCann et al.,
2006). The benefits make soft network approaches practical options
for formalizing conceptual models in support of EBM.

The use of soft network models to explore system responses to
management-relevant scenarios has grown considerably in the en-
vironmental and ecological literature (Aguilera et al., 2011; Landuyt
et al., 2013; Papageorgiou and Salmeron, 2013; Carriger et al., 2018)
and all three methods have been applied widely to issues ranging

from coastal planning and fisheries management to global climate
change and species conservation (e.g. Ramsey and Norbury, 2009;
Landuyt et al., 2013; Melbourne-Thomas et al., 2013; Gray et al.,
2015; Pittman et al., 2020; Reum et al., 2020a). However, practi-
tioners typically adopt only one modelling framework to evaluate
scenarios and it remains unclear the general extent to which projec-
tions may differ between QNMs, FCMs, and BBNs. The models are
similar in that the underlying conceptual model is represented as a
graph, but differ in terms of their mathematics, assumptions, inputs,
and the nature of their predictions (i.e. qualitative, semi-qualitative,
or probabilistic, respectively; Puccia and Levins, 1985; Kosko, 1986;
Pearl, 1986). The models are thus structurally distinct and if pro-
jections differ between models, failure to account for model (struc-
tural) uncertainty may result in misleading inferences. This gap in
understanding contrasts with efforts to characterize sources of un-
certainty within each framework (Melbourne-Thomas et al., 2012;
Ramsey et al., 2012; Baker et al., 2018).

Here, we sought to evaluate the level of agreement in projec-
tions from QNMs, FCMs, and BBNs. To develop a more general
understanding of model agreement in EBM contexts, we recast
conceptual models developed for three different coastal and ma-
rine systems as QNMs, FCMs, and BBNs. The conceptual models
were developed by independent research partnerships and reflect
different motivating issues, but are suitable for exploring simi-
lar management interventions (fishing) and environmental change
(warming) scenarios. The first model (Figure 1) represents the Pri-
bilof Islands (PI) in the eastern Bering Sea, and focuses on the
ecology and management of blue king crab (BKC; Paralithodes
platypus), which once supported a significant fishery but is now at
historically low population levels (Reum et al., 2020a). The second
model (Figure 2) depicts the Georges Bank (GB) ecosystem of the
northwestern Atlantic, including environmental, ecological, and
human subsystems, and focuses on relationships between commer-
cial and recreational fishing, ecosystem services, and human well-
being (DePiper et al., 2017). The third model (Figure 3) focuses
on efforts to mitigate coastal erosion in the Mid-Barataria Basin
(MB), a region near the mouth of the Mississippi River, by divert-
ing river flow and sediment through the proposed Mid-Barataria
Sediment Diversion (https://coastal.la.gov/project/mid-barataria-s
ediment-diversion/). The model aims to represent the relationships
among physical, biological, social, and economic components to ex-
amine the potential effect and trade-offs from proposed sediment
diversions and ecosystem restoration.

For each conceptual model, we developed corresponding QNMs,
FCMs, and BBNs; evaluated model agreement in outcomes under
fishing and warming scenarios; and examined whether models pro-
duced outcomes that implied different management-relevant trade-
offs. In addition, we compare the effort required to adapt conceptual
models to conform to the assumptions of each modelling frame-
work, and clarify the strengths and weaknesses of the approaches
from a practical perspective.

Methods
Our primary goal was to compare agreement in projections be-
tween QNMs, FCMs, and BBNs as commonly implemented in the
ecological literature. We first provide brief overviews of QNMs,
FCMs, and BBNs to highlight key distinctions between the ap-
proaches and their outputs, and note differences in terminology that
reflect their different origins and mathematics. Where pertinent, we
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Figure 1. Overview of variables included in the PI BKC conceptual model. For clarity, variables are organized into descriptive groups. Variables
that were perturbed in the warming and fishing scenarios are indicated by thick outlines. Arrows symbolize general interaction within and
across groups of variables; a detailed diagram with all pairwise links is provided in the Supplementary Materials.

Figure 2. Overview of variables included in the GB conceptual model. For clarity, variables are organized into descriptive groups. Variables that
were perturbed in the fishing and warming scenarios are indicated by thick outlines. Arrows symbolize general interaction within and across
groups of variables; a detailed diagram with all pairwise links is provided in the Supplementary Materials.

direct interested readers to more in-depth treatments of the under-
lying theory. For each case study system we provide a summary of
the conceptual model and the issues motivating its construction.
Detailed procedures for recasting the conceptual models as either
a QNM, FCM, or BBN are provided in the Supplementary Mate-
rials. To facilitate comparisons of the models, adjacency matrices
corresponding to the final QNMs and FCMs and matrices indicat-
ing the structure of the DAGs used in the BBNs are also provided
in Supplementary Materials. Input files used to run the models are
available online (Reum et al., 2021b).

Network models
QNMs
QNMs were developed from Loop Analysis that was first intro-
duced in the ecological literature (Levins, 1974). Under Loop Anal-
ysis, conceptual models are represented as signed, directed graphs
(or digraphs), where edges (links) represent interactions between
nodes (variables) and encode the sign (+, −, or 0) of the effect of
one variable on another. The matrix representation of the signed
digraph corresponds to the community matrix A, which encapsu-
lates the pairwise interactions of variables composing the system.
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Figure 3. Overview of variables included in the MB conceptual model. For clarity, variables are organized into descriptive groups. The model
was based in part upon the EBM–DPSER conceptual modelling framework (Kelble et al., ) and distinguishes between pressure variables and
response variables. Variables that were perturbed in the fishing and warming scenarios are indicated by thick outlines. Arrows symbolize
general interaction within and across groups of variables; a detailed diagram with all pairwise links is provided in the Supplementary Materials.

By assuming the system is in equilibrium and that pairwise interac-
tions between variables are approximately linear near equilibrium,
the qualitative response of the system to a press perturbation can
be calculated from the inverse of the negative community matrix
(−A–1; Puccia and Levins 1985). A press perturbation corresponds
to a sustained increase (or decrease) in the level of the perturbed
variable (the exact value is not specified but assumed to be small)
and the response of the perturbation is the sign of the direction of
changes in the equilibrium level of variables composing the system
(Bender et al., 1984). A key feature of the approach is that feedbacks
in conceptual models are preserved and incorporated into the pro-
jected responses (Puccia and Levins, 1985).

For small systems (e.g. less than five to seven variables), A can
be analyzed symbolically to identify criteria for system stability
or conditions needed to obtain a sign outcome for a particular
node (Puccia and Levins, 1985; Dambacher et al., 2003). How-
ever, in larger systems, simulation methods are more practical and
can be used to rapidly assess the sign response of nodes and char-
acterize uncertainty (Dambacher et al., 2002, 2003). QNMs are
synonymous with simulation-based approaches to Loop Analysis
(Raymond et al., 2011; Melbourne-Thomas et al., 2012). The simu-
lation approach proceeds by first sampling non-zero elements of A
from uniform probability distributions. The sign of the link is re-
tained, but the magnitude is sampled over two orders of magnitude
(0.01–1), reflecting vague priors (Raymond et al., 2011; Melbourne-
Thomas et al., 2012). The simulated A is tested against stability cri-
teria (Melbourne-Thomas et al., 2012), and if stable, the sign re-
sponse of system variables to a given press perturbation scenario is
recorded. In practice, as the number of variables and links in QNMs
increase, the likelihood of drawing a stable community matrix de-
creases, and the issue is exacerbated if few negative feedbacks are
present. To counteract this, negative self-loops are applied to all

nodes in the system (e.g. Raymond et al., 2011; Melbourne-Thomas
et al., 2013). In ecological communities, negative self-loops can rep-
resent negative density-dependence but more broadly can represent
stabilizing control by variables outside the formal model (Puccia
and Levins, 1985).

Outcomes are summarized from a large number of stable com-
munity matrices (104) to obtain estimates of uncertainty. Sign
agreement (SA) is calculated as (P − N)/T, where P, N, and T cor-
respond to the number of positive, negative, and total simulated
outcomes. Values of SA range from −1 to 1; larger absolute values
reflect higher confidence in the projected sign outcome and val-
ues near zero indicate higher ambiguity. If P and N are identical
(e.g. 50% positive and 50% negative), then every positive outcome
is matched by a negative outcome and the level of agreement is 0.
All else being equal, the absolute value of SA decreases as the num-
ber of countervailing feedbacks increases (Dambacher et al., 2003).
The QNMs developed for each system were analyzed using the R
package “QPress” (Melbourne-Thomas et al., 2012).

FCMs
FCMs were first introduced and popularized in the social sciences
(Kosko, 1986) but have been used to represent systems across dis-
ciplines including coupled social–ecological systems (Özesmi and
Özesmi, 2004; Papageorgiou and Salmeron, 2013). Cognitive maps
are static, graphical depictions of perceived causal relationships be-
tween variables (or concepts) composing a system (Axelord, 1976).
In FCMs, the magnitude of the effect or degree of causality is
designated according to linguistic categories (e.g. weak, moder-
ate, strong; rarely, sometimes, usually and so on) and fuzzy causal
algebra is used to propagate causal relationships and infer the
system-wide effects of perturbation scenarios (Kosko, 1986). The
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use of linguistic categories captures uncertainty or fuzziness in the
nature of the relationships and is easily understood using human
reasoning (Kosko, 1986). To propagate causal relationships, linguis-
tic categories are first converted to real numbers on the interval [−1,
1] based on fuzzy set theory or, alternatively, designation of linguis-
tic categories can be bypassed and causal weights specified directly.

The cognitive map is transformed into an adjacency matrix E, a
square matrix with nodes Ci listed on the vertical axis and nodes
Cj on the horizontal axis. The elements of the matrix (eij) contain
the values of the causal relationships. If eij < 0, then Ci causally de-
creases Cj; if eij = 0, no causality is implied; and if eij > 0, then Ci

causally increases Cj (Kosko, 1986). Baseline equilibrium values of
concepts are obtained through forward propagation of the causal
weights (Kosko, 1986). Specifically, the initial states of concepts are
set to a value of 1, stored in the state vector c, and updated follow-
ing:

c[t+1] = f
(
Ect) , (1)

where the superscript t denotes the simulation time step and func-
tion f is the “activation function,” typically the logistic function,
which rescales all values between 0 and 1. The state vector is up-
dated until an equilibrium is reached (typically less than 50 itera-
tions in most applications), though limit cycles or chaotic behaviour
may also emerge (Özesmi and Özesmi, 2004).

To implement a scenario, the forward propagation procedure is
repeated but the states of concepts are fixed at values that reflect
the scenario under consideration. The change in the resulting equi-
librium state vector relative to the baseline equilibrium state vector
conveys the magnitude and direction of change of concepts under
the scenario. The numerical difference can be “fuzzified” back into
linguistic categories or treated as the final output. Similar to QNMs,
the method permits representation of feedbacks, causal weights
(pairwise interactions) are assumed to be linear, and scenario out-
comes convey change relative to assumed equilibrium conditions
(Papageorgiou and Salmeron, 2013). Self-loops are also permitted
to represent specific processes, though they are not required to ad-
dress computational challenges as in QNMs. In conventional FCMs,
the magnitudes of outcomes are interpreted in qualitative, relative
terms, and lack quantitative uncertainty estimates; however, meth-
ods to represent uncertainty are evolving (Ramsey et al., 2012; Baker
et al., 2018). In all case studies, we used the R package “FCMapper”
to run scenarios (Turney and Bachhofer, 2016) because of trans-
parency in the underlying code and post-processing capabilities in
the R environment, but note that other software platforms imple-
ment FCMs with potentially more user-friendly graphical user in-
terfaces (e.g. Mental Modeler; Gray et al., 2013).

BBNs
BBNs have grown in popularity in environmental modelling (Aguil-
era et al., 2011) and are probabilistic graphical models that consist of
two structural components: (1) a directed acyclic graph (DAG) and
(2) a conditional probability table (CPT). Graph nodes represent a
random variable with a finite set of mutually exclusive states and
graph edges are directed from a “parent” node to a “child” node to
indicate conditional dependency relationships. These directed de-
pendence relationships flow from at least one node with no par-
ents to at least one node with no children without creating cycles.
Thus, BBNs by definition cannot include feedbacks, unlike QNMs
and FCMs. The CPTs represent the strength of the dependence
relationships corresponding to edges in the DAG and denote the

likelihood of the state of a child node, given the states of its par-
ent nodes (Renken and Mumby, 2009; Landuyt et al., 2013). Values
composing the tables can be constructed from empirical data where
available, or assigned based on expert judgment.

The joint probability distribution for variable X consisting of
i = 1, 2, …, n states, where x denotes state, is given by the chain
rule:

P (x1, x2, . . . , xn ) =
∏

xi ∈ X

P(xi|parents(xi)). (2)

Using the model, information on the states of nodes is propa-
gated through the DAG, and the posterior distribution is updated
based on proposed changes in node states or the introduction of
new data or evidence. That is, to specifically evaluate a scenario,
the state of a node is changed, and the conditional probabilities are
propagated through the model structure. The resulting change in
the posterior distribution of variable state probabilities reflects the
outcome. Similar to QNM and FCMs, outcomes under the frame-
work correspond to equilibrium conditions and do not represent
temporal dynamics. The software Genie (BayesFusion, LLC., v. 2.3)
was used to parameterize the BBN networks for all case studies and
obtain posterior probabilities under the perturbation scenarios.

Case studies
PI BKC
The PI BKC conceptual model represents important ecological in-
teractions between BKC and the benthic community, and was orig-
inally developed to identify potential management interventions
for promoting BKC stock recovery under climate change (Reum
et al., 2020a). The model is built around the life history of BKC
that is separated into four stages (larvae, benthic recruit, juvenile,
and adult), and includes six additional species or functional groups
that are competitors and predators of BKC (Figure 1). To develop
the model, multiple workshops were convened that included aca-
demic, indigenous government, state, and federal agency scientists,
PI community members, and representatives from local fishing or-
ganizations. At each workshop, participants were guided through
activities intended to encourage discussion and elicit input on the
key ecological processes influencing BKC and other key benthic
species or functional groups that interact with BKC. The concep-
tual model reflects a synthesis of information from the literature
and opinions and views encountered at the workshops, and was de-
veloped with the original intention of informing a QNM (Reum
et al., 2020a).

Georges Bank
The GB conceptual model was developed by the Northeast Fisheries
Science Center in support of NMFS’s Northeast Integrated Ecosys-
tem Assessment and as part of the ICES Working Group on the
Northwest Atlantic Regional Sea (ICES, 2016; DePiper et al., 2017).
Over the course of several workgroup meetings, scientists with ex-
pertise on regional management issues and ecosystem dynamics
built the conceptual model with the intent of informing QNMs,
FCMs, and BBNs in follow-on studies. The conceptual model fo-
cuses on four managed groups (shellfish, forage fish, groundfish,
and protected species) and was motivated in part by a need to better
understand how these groups may respond to management actions
or environmental change. Consequently, the model emphasizes res-
olution of human activities (commercial and recreational fishing),
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environmental drivers, trophic interactions, and lower trophic lev-
els with strong relationships to the focal groups. Additional details
regarding development of the conceptual model are available in De-
Piper et al. (2017) and working group reports (ICES, 2015, 2016).

MB
The MB is a shallow, brackish embayment located in southeast
Louisiana that is bounded to the North by the Mississippi River
and to the south by barrier islands that separate it from the Gulf
of Mexico. In response to rapid land loss and erosion in the region,
construction of a large sediment diversion project is currently un-
derway that will divert sediment and fresh water from the Missis-
sippi River (Peyronnin et al., 2017). The project intends to sustain
and build land to reduce sea level rise impacts, stabilize wetland
loss, and enhance wildlife populations. However, impacts on the
larger social–ecological systems are not fully understood (Peyron-
nin et al., 2017). To examine potential social–ecological trade-offs,
a team of scientific experts from NOAA’s Gulf of Mexico Integrated
Ecosystem Assessment (IEA) team initiated development of a con-
ceptual model for the MB based on the EBM-Driver, Pressure, State,
Ecosystem service, and Response framework (Kelble et al., 2013),
which organizes variables in the system according to pressures (e.g.
flooding), ecosystem states (e.g. wetlands), and ecosystem services
(e.g. farming). This framework was modified to include human di-
mension variables (e.g. jobs). The conceptual model was vetted with
stakeholders and refined based on feedback until consensus was
achieved. Similar to GB, the conceptual model was built with the
intent of informing subsequent development of QNMs, FCMs, and
BBNs.

Model comparison
Network metrics
In addition to the total number of nodes and links (connectivity),
we compared differences in network size and structure across mod-
els and systems based on link density (average number of links per
node), connectance (the number of realized links relative to the to-
tal number possible), the total number of self-loops, and the hier-
archy index (Özesmi and Özesmi, 2004; Lau et al., 2017). The lat-
ter ranges from 0 to 1, where 1 corresponds to a fully hierarchical
network (a linear network where a node influences only one other
node) and 0 indicates a fully democratic network where all nodes
influence all others (Özesmi and Özesmi, 2004).

Model evaluation
We measured similarity of outcomes predicted by the different net-
work models under three scenarios that could conceivably occur
across all three systems. The first scenario (“fishing”) simulated
an increase in fishing mortality (both directed and bycatch) rela-
tive to current fishing levels on groups vulnerable to trawling. The
second scenario (“warming”) simulated an increase in ocean tem-
perature and its potential impacts on species or functional groups.
The final scenario evaluated the combined effect of both fishing
and warming (“fishing + warming”). The nodes representing tem-
perature and trawl fishing effort in models for each system along
with their direct effects on variables are provided in Supplementary
Table S1.

In the QNMs, the warming, fishing, and fishing + warming sce-
narios were implemented by positively pressing the corresponding
temperature and fishing nodes individually or jointly. Outcomes for
QNMs were expressed as SA. For FCMs, scenario runs were per-
formed by fixing the value of temperature or trawl fishing concepts
to 1 individually or jointly, and outcomes were calculated in terms
of the change in the magnitude of each node relative to baseline lev-
els (that is, scenario/baseline – 1). A similar procedure was also ap-
plied to the BBNs, where the probability of a warmer state or higher
state of trawl fishing effort was set to 1, reflecting a 100% probabil-
ity. BBN outcomes consisted of the difference in the probability of
observing the high (or highest) state of each node between scenario
and baseline conditions.

We measured agreement between network model outcomes in
three ways based on responses from nodes that were susceptible to
direct or indirect influence from the pressed nodes under the fish-
ing + warming scenario (a total of 14, 12, and 31 response nodes for
the Pribilof Island, George’s Bank, and MB systems, respectively).
Doing so removed nodes from the calculations that were unable to
change under the scenarios or that were perturbed directly in the
scenarios. In the case of the MB and GB models, nodes in the former
category tended to be associated with processes that were resolved
for evaluating other ecosystem stressors in the original model ap-
plication.

For each pair of network methods, we first calculated “sign
match”, which we defined as the ratio of the number of nodes that
had the same sign outcome under each modelling framework (that
is, they matched in sign) to the total number of nodes suscepti-
ble to direct or indirect influence from the pressed nodes in the
same system. Second, we calculated “category match”, which we
defined as the ratio of the number of nodes with outcomes that
had both the same sign and magnitude to the total number of
nodes susceptible to the perturbations. For all three network frame-
works, we considered the absolute values of outcomes in the in-
tervals [0, 0.1), [0.1, 0.5), and [0.5, +∞] as weak, moderate, and
strong, respectively, similar to intervals used elsewhere (e.g. Mar-
cot et al., 2001; Raymond et al., 2011). Placement of outcomes on
the same scale facilitated comparison, but we note that outcome val-
ues have different interpretations based on the network model. In
using the same scale, we made the reasonable assumption that rel-
atively strong responses (FCMs) would be associated with a higher
probability of occurrence (BBNs) and high SA (QNMs) and that
the converse would also hold. Given the low frequency of strong re-
sponses, we considered either a strong or moderate response with
SA a match.

For the third similarity measure, we focused on agreement be-
tween moderate and strong responses, as stronger responses are of
particular interest in many decision-making contexts. Specifically,
we calculated “strong category match” as the ratio of the number of
nodes with outcomes of the same sign and that were either moder-
ate or strong under both modelling frameworks to the total number
of nodes with outcomes that were moderate or strong under at least
one of the modelling frameworks. For each similarity measure, we
also calculated agreement in node outcomes across all three net-
work modelling frameworks.

In addition, we compared whether potential trade-offs as in-
ferred from node outcomes under the scenarios differed between
models. Specifically, we examined a subset of focal nodes, which
represented variables that were important to the management is-
sues motivating the conceptual models of each system and evalu-
ated their responses in the scenarios for consistency across the three
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Table 1. Network summary statistics for QNM, FCM, and BBN models developed for the PI, GB, and MB systems.

PI GB MB

QNM FCM BBN QNM FCM BBN QNM FCM BBN

Node number         
Connectivity (link number)         
Link density . . . . . . . . .
Connectance (connection density) . . . . . . . . .
Self-loop number         
Hierarchy . . . . . . . . .

Table 2. Percentage of nodes with responses categorized as weak, moderate, and strong under fishing, warming, and fishing + warming scenarios
for the PI, GB, and MB systems. Percentages are based on the total number of response nodes that were susceptible to direct or indirect influence
from nodes pressed under the fishing + warming scenario and corresponded to , , and  nodes, respectively. Values greater than % are
in bold.

% Weak % Moderate % Strong

Scenario System QNM FCM BBN QNM FCM BBN QNM FCM BBN

Fishing PI  97 56      
GB  85 92    92  
MB  86 100    50  

Warming PI  100 50 79  50   
GB  100 100 54     
MB  71 100 50     

Fishing + warming PI  97    56   
GB  85 92    69  
MB  71 86 50     

network modelling methods. Focal nodes for the PI system in-
cluded adult BKC, its competitor red king crab (Paralithodes
camtschaticus), and two of its predators, Pacific cod (Gadus macro-
cephalus) and adult halibut (Hippoglossus stenolepis). The GB fo-
cal nodes included two important functional groups (groundfish
and forage fish), an indicator of habitat quality (seafloor and dem-
ersal habitat), and an indicator of a key ecosystem service (fishery
catches and the provisioning of seafood). Last, the MB focal nodes
included total fish biomass (fish), the aerial extent of wetland habi-
tat, the availability of habitable land, and an index of recreational
opportunities.

Results
Network summaries
All network metrics differed primarily by system, and to a lesser
degree by model type (Table 1). Overall, the MB network models
had the most nodes and links, approximately twice and three times,
respectively, the number for PI models, which were the lowest
(Table 1). Further, link densities were also highest for the MB mod-
els, and were approximately double the values of the GB models,
which were the lowest (Table 1). Connectivity, however, was highest
for the PI model, followed by MB and then GB (Table 1). Hierarchy
indices were all low (less than 0.05; Table 1). Between network mod-
els, QNMs consistently had the highest numbers of links, link den-
sities, and connectance values, while BBNs had the lowest (Table 1).
This was related to the large number of self-loops in the QNMs and
the reconfiguration of networks to remove cycles in BBNs (Table 1;
see Supplementary Material for details).

Comparison of model projections
Overall, a majority of nodes responded weakly under the FCM
and BBN models to the individual and joint fishing and warming
scenarios across systems (Table 2). For BBN and FCMs, weak re-
sponses composed between 44–100% and 71–100%, respectively, of
node outcomes across systems and scenarios. In contrast, the ma-
jority of outcomes were moderate or strong under the QNMs (Table
2). Strong QNM responses occurred most frequently under the
fishing scenario for two of the three systems, moderate responses
occurred most frequently under the warming scenario for all three
systems, and the proportion of responses that were moderate and
strong were more similar under the joint scenario (Table 2).

In general, outcomes matched in sign across all network mod-
els for 32–65% of nodes; lower sign match rates occurred for sys-
tems under the fishing scenario and the highest values occurred
under the warming + fishing scenario (Table 3). In comparison,
pairwise sign matching rates were higher overall, ranging from 33
to 92% (Table 3). Among network model pairs, FCM–QNM sign
match rates were equal to or higher than other model pairs for
Pribilof Island system outcomes, ranging from 64% (fishing sce-
nario) to 86% (both the warming and fishing + warming scenarios;
Table 3). FCM–QNM sign match rates were also higher than other
model pair for GB outcomes across scenarios, with values ranging
from 67 to 92%. In contrast, MB sign match rates were lower but
identical across model pairs under the fishing scenario (52%), high-
est for BBN–FCM under the warming and fishing + warming sce-
narios (90% and 77%, respectively).

Match rates based on outcome sign and strength category were
substantially lower than those for sign alone; match rates all three
network models ranged from 0 to 21% and pairwise match rates
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Table 3. Summary of prediction similarities across network types and under different perturbation scenarios for PI, GB, and MB systems. Sign
match is the percentage of nodes with the same sign response. Sign and strength category match is the percentage of node responses with
matching response signs and magnitudes. Strong and moderate match indicates the percentage of nodes in which moderate or strong responses
were projected for nodes by both network model relative to the total number of nodes (indicated in parentheses) in which either network
predicted a strong or moderate response. Matches equal to or greater than % are in bold. Percentages are based on the total number of
response nodes that were susceptible to direct or indirect influence from pressed nodes under the fishing + warming scenario and corresponded
to , , and  nodes for PI, GB, and MB, respectively.

% Sign match % Sign and category match % Strong category match

Scenario System
FCM-
QNM

BBN-
QNM

BBN-
FCM All

FCM-
QNM

BBN-
QNM

BBN-
FCM All

FCM-
QNM

BBN-
QNM BBN-FCM All

Fishing PI   64    50   ()  ()  ()  ()
GB 92         ()  ()  ()  ()
MB 52 52 52       () 85 (13)  ()  ()

Average 63  53       ()  ()  ()  ()

Warming PI 86 57 79 57   57   ()  () 50 (4) 50 (2)
GB 67 50        ()  ()  ()  ()
MB 58 65 90 52      ()  ()  ()  ()

Average 67  77       ()  ()  ()  ()

Fishing + Warming PI 86 64 71 64      ()  ()  ()  ()
GB 75 67 50       ()  ()  ()  ()
MB 65 65 77 65      ()  ()  ()  ()

Average 72 65 70 60      ()  ()  ()  ()

were lower for all models and scenarios (Table 3). Overall, sign and
strength category match rates decreased the most for FCM–QNM
and BBN–QNM outcomes relative to sign match rates (Table 3).
This was related in part to the higher proportion of moderate
and strong QNM outcomes relative to BBN and FCM outcomes
across systems and scenarios (Table 2). Consequently, sign and
strength cateogry match rates were typically highest for BBN–FCM
outcomes, which were dominated by weak responses (Table 3).

Match rates for only strong outcomes were also low: values for
all but two pairwise comparisons were less than 50% and the mode
of the match rate was 0% (Table 3). Overall, pairwise strong match
rates were lowest for BBN–FCM outcomes and all but two match
rates were greater than 0%. Strong match rates were slightly bet-
ter for FCM–QNM and BBN–QNM outcomes (Table 3), with the
highest match rate (85%) occurring between BBN and QNM for
MB under the fishing scenario (Table 3).

Focal nodes
Outcomes for focal nodes were predominately moderate to strong
under the QNM in all three systems, and tended to be weaker for
BBNs in the PI and GB systems and for FCMs in all three systems
(Figure 4). For a subset of nodes, the signs of outcomes were con-
sistent within scenarios across modelling methods, indicating a de-
gree of robustness (e.g. Pacific cod, PI; Demersal Habitat, GB; and
Wetlands, MB; Figure 4). However, for other nodes differences in
outcomes between models resulted in different inferences regard-
ing potential trade-offs under the three scenarios (Figure 4).

In the PI system, under increased fishing effort the QNM pro-
jected higher BKC and RKC levels (moderate and weak strength,
respectively) and reductions in Pacific cod and adult halibut (mod-
erate strength). In the model the groundfish fishery increases mor-
tality on all four species, but Pacific cod and halibut are also preda-
tors on early life history stages of BKC and RKC. The net effect of
their removal increased BKC and RKC levels. The strong trade-
off, however, was not evident under the FCM and BBN, where

outcomes were uniformly negative, albeit weakly in terms of
strength (Figure 4). Under warming, three of the four PI focal
species had consistent sign responses across modelling approaches;
the exception was halibut, which increased, decreased and re-
mained unchained under the QNM, FCM, and BBN, respectively.
Under the joint fishing + warming scenario, the sign of most fo-
cal nodes were also uniform across models, though strengths were
again highest under the QNM.

For GB, under the fishing scenario in the QNM, a trade-off
was apparent between groundfish and demersal habitat on the one
hand and seafood and foragefish on the other. Groundfish, demersal
habitat, and seafood are all directly linked to fishing effort, and their
outcomes reflect the sign of the direct linkage, while the increase
in foragefish likely reflects release from predation from groundfish.
Under the FCM and BBN models, the strength of the trade-offs de-
creased overall and the sign of the outcome for seafood reversed un-
der the BBN (Figure 4). Under warming, sign disagreement across
modelling methods also occurred for foragefish and seafood, and
additionally, under the joint fishing + warming scenario ground-
fish outcomes were inconsistent, indicating heightened ambiguity
in their response (Figure 4).

In the MB system, sign outcomes were consistent across meth-
ods under the fishing scenario for Fish and Wetlands, but incon-
sistent for Recreation and Habitable Land (Figure 4). For Habit-
able Land, no change was projected under the BBN, which reflected
the removal of pathways that in the other models indirectly con-
nected it to fishing effort. The difference in network structure re-
flected the obligatory removal of links to prevent feedbacks in the
BBN (see Methods). Under warming, sign reversals were limited to
Fish, which increased under warming in the QNM, but decreased
in the FCM and BBN; all other nodes responded negatively across
models (Figure 4). Under the joint fishing + warming scenario, sign
disagreement across modelling methods were limited to Fish and
Recreation, which increased under the QNM and FCM, respec-
tively (Figure 4). Outcomes for all other nodes and models were
negative (Figure 4).
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 J. C. P. Reum et al.

Figure 4. Response of focal nodes in network models of the Pribilof Island, GB, and MB system under fishing, warming, and fishing + warming
perturbation scenarios. Nodes with no direct or indirect pathways linking them to the perturbed node in a given scenario are indicated by an
open grey square. For the Pribilof Island nodes, BKC and RKC correspond to blue king and red king crab; A indicates adult life history stages. For
the GB nodes, HSD corresponds to seafloor and demersal habitat; for the MB nodes, HL corresponds to habitable land.

DISCUSSION
Soft network approaches are increasingly applied in EBM settings,
but few studies have attempted to compare outcomes across meth-
ods. Our main results indicate that differences in projections can
be considerable depending on whether QNMs, FCMs, or BBNs are
utilized and that outcomes based on a single method should be

interpreted with caution. Currently, practitioners tend to use only
one framework when exploring management-relevant scenarios,
and while different types of uncertainty (e.g. parametric, structural)
can be represented within frameworks to varying degrees (Mar-
cot et al., 2006; e.g. Melbourne-Thomas et al., 2012; Baker et al.,
2018), structural uncertainty between frameworks is considerable.
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Characterizing this uncertainty should be a high priority, particu-
larly when network approaches are applied in contexts where data
to validate models or criteria to select outcomes from one frame-
work over another are lacking. In the three case studies, QNM out-
comes for the focal nodes tended to have higher strengths relative
to the other network methods across scenarios. If considered in iso-
lation, QNM outcomes in these instances could potentially lead to
overconfidence in projection certainty. For example, in the PI sys-
tem, the management action to increase fishing effort results in the
desirable effect of promoting population recovery of BKC under
the QNM, but when the outcome is considered in concert with the
negative, weak outcomes from the FCM and BBN, the projection
likelihood is tempered and a need for heightened caution is indi-
cated. The same issue arises for groundfish and foragefish in the
GB system, where strong, contrasting outcomes under the QNM for
the fishing, warming and joint scenarios, were tempered by weaker
outcomes, some in opposing directions, under the FCM and BBN.
Conversely, agreement across methods improves confidence in pro-
jections and suggests that the outcome may be robust in the face of
structural uncertainty (Cheung et al., 2016). For instance, projec-
tions for Wetlands in the MB system were variable in strength, but
consistently negative across methods under the fishing, warming,
and joint scenarios. From a management perspective, agreement
across the different methods adds weight to the plausibility of this
undesirable outcome and highlights a possible indirect effect un-
der the scenarios. Like their quantitative counterparts, soft network
models are best suited to informing strategic decision-making, and
a fuller assessment of prediction uncertainty through multimodel
comparisons could potentially advance their uptake in EBM (e.g.
Addison et al., 2013).

Despite originating from a common conceptual model, out-
comes between network models were moderately similar only in
terms of sign match. Moreover, the relative level of similarity in out-
comes between network models varied across scenarios and sys-
tems. That is, outcome similarity was not consistently higher or
lower for any specific pair of methods. Among comparisons in-
volving BBNs, the lack of consistency may partly be related to dif-
ferences in how the conceptual models were simplified to remove
feedbacks across systems. For the MB model, a DAG was con-
structed by preferentially removing links that were scored low by
experts in terms of being relevant to representing systems responses
to sediment diversions (a major scenario motivating the model).
In contrast, feedback loops in the GB and Pribilof Island mod-
els were broken based on expert judgment with the goal of em-
phasizing drivers on focal species and to reflect explicit ecological
assumptions (e.g. bottom-up control), respectively. The different
approaches were driven by the different issues motivating the con-
ceptual models, and reflect the absence of any single best prac-
tice for simplifying systems with feedbacks into DAGs. Varia-
tion in the similarity of FCMs and QNMs outcomes also ranged
widely across systems and scenarios, despite retention of feed-
backs and more consistent topological differences (namely, the
addition of negative self-effects in the QNMs relative to FCMs
to address practical computational constraints; Raymond et al.,
2011). For these models, topological differences may play a smaller
role relative to link weight in driving differences in outcomes.
However, quantifying the extent to which network topology,
interaction strength, and fundamental differences in the un-
derlying mathematics drive dissimilarity in projections is chal-
lenging because the topological differences are necessitated by
the approaches themselves. Evaluation of the effects of network

topology could potentially be evaluated within the FCM frame-
work as it can accommodate both DAGs and negative self-loops,
but similar comparisons are less feasible due to constraints under
the BBN and QNM frameworks (Marcot et al., 2006; Raymond
et al., 2011).

While we have focused on comparisons of the model outcomes,
researchers could potentially consider treating the model set as an
ensemble and blend projections across methods. In the simplest
case, model outcomes could be reduced to a common currency such
as the sign of the response or to the strength categories used in the
current study, and unweighted quantities (e.g. mean, standard devi-
ation) could be calculated assuming a “democracy of models.” Al-
ternatively, if predictive performance metrics are available, model
outcomes could be weighted accordingly or provide a basis for se-
lecting a “best” model (Burnham and Anderson 2002; King et al.,
2009). That said, soft network approaches are often used because
information is sparse, in which case other more subjective criteria
such as the relative plausibility of model assumptions may provide
more relevant weighting criteria. For instance, the assumption that
network structure must conform to a DAG in a BBN could be a basis
for down-weighting BBN outcomes relative to the other methods if
feedbacks are considered essential to representing the system un-
der study. Ultimately, the approach taken to synthesize outcomes
will depend on the management question and characteristics of the
system, and we note that the technical challenge of combining out-
comes from the three approaches in a statistically coherent manner
requires further study.

In each case study, researchers formulated individual QNMs,
BBNs, and FCMs without particular regard to the outcomes of the
other two models. This approach helped to indicate the possible
level of variation in outcomes that can go undetected when re-
searchers adopt only one method. However, in practice, EBM mod-
elling should follow an iterative process (Levin et al., 2009; Addi-
son et al., 2013) and future efforts to simultaneously apply all three
methods could draw from lessons learned in other multimodel
research endeavors (Townsend et al., 2014; Reum et al., 2021a).
For instance, information learned under one modelling approach
could be used to inform subsequent iterations of network struc-
ture under all frameworks or aid revision of the common under-
lying conceptual model. The sharing of information across models,
or the “mingling of models,” entails updating models with knowl-
edge gained through the process of building the model set itself
(Townsend et al., 2014). Similarly, sharing model outcomes with
stakeholder groups is an important step in the model building cycle,
and the level of similarity or divergence in projections can stimu-
late useful dialogue and spur further model refinement (Reum et al.,
2021a). A key advantage of soft network models is that they are easy
to revise and should be considered working hypotheses of system
structure.

The present study provides an evaluation of outcome uncer-
tainty across network methods, but we note that operationaliz-
ing these models to support EBM decision-making will require
consideration of additional uncertainty sources and further refine-
ment. Specifically, we have not addressed model uncertainty at
the conceptual model level. The set of conceptual models consid-
ered represent composite models and average over different beliefs,
opinions, or levels of evidence for processes operating within the
system to varying degrees. Important components of each system
may have been omitted from the conceptual models as well, due
to factors such as who participated in model development and the
degree to which conceptual model simplification was emphasized.
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Such uncertainty could be considered explicitly by developing al-
ternative conceptual models in consultation with stakeholders and
managers (Stier et al., 2017). The corresponding network models
could be added to the model set and variance partitioning meth-
ods applied to quantify the relative importance of conceptual model
uncertainty to outcome variance (Cheung et al., 2016; Reum et al.,
2020b). Similarly, each BBN was represented with one DAG, but
alternative DAGs may also be plausible and could be added to the
model set. We recommend follow-on studies that aim to (1) evalu-
ate which processes and linkages disproportionately drive outcome
uncertainty to focus model revision and data collection efforts, (2)
attempt model validation using empirical data where available, and
(3) undertake vetting of all models with stakeholders to improve
transparency, familiarity, and potential uptake of results.

We have focused on comparisons of projected outcomes across
network model methods, but disagreement in outcomes does not
diminish the larger benefits of developing conceptual models in
tandem with network models. First, the process of developing con-
ceptual models can provide a framework for querying stakehold-
ers of their system knowledge, facilitate synthesis and organization
of system understanding, and place different knowledge sources
(e.g. formal scientific research, experiential knowledge, or a com-
bination thereof) on equal footing (Harvey et al., 2016; DePiper
et al., 2021). Second, conceptual modelling exercises can generate
optimism that is often lacking when stakeholders face long-term
environmental challenges (Freitag et al., 2019) and facilitate dia-
logue between stakeholders, managers, and scientists, which can
broaden the perspectives of each group and increase buy-in to
model building enterprises (Reum et al., 2021a). Third, represent-
ing conceptual models using multiple network models explicitly
acknowledges model uncertainty, which can help build credibil-
ity with stakeholders along with confidence in projections (Ad-
dison et al., 2013; Cheung et al., 2016). Last, disagreement in
outcomes across model methods indicates sensitivity to system
specification and the need for closer scrutiny of the models, their
assumptions, and the underlying conceptual model from differ-
ent vantages (Reum et al., 2021a). The networks can be analyzed
within each framework to identify important links or relationships
that drive the outcome of important nodes. Insights obtained from
closer evaluation can help inform research priorities, future data
collection needs, and areas to focus quantitative modeling efforts.
These and other benefits common to broader classes of ecological
models (Addison et al., 2013; Geary et al., 2020) make conceptual
and network models useful tools in the EBM modelling toolbox.
The intercomparison of network modeling approaches is a critical
step towards operationalizing conceptual models and we strongly
encourage continued research into the synthesis of outcomes
across frameworks.
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